The GLUCARATE Report

D-Glucarate Helps Remove Toxins and Carcinogens From the Body

Cancers develop gradually as a result of a complex interaction of factors related to heredity, environment, lifestyle and diet (NAS, 1982; Slaga, 1980 a and b). Based on sound scientific estimates, it can be stated that greater than 80 percent of all cancer deaths are related to the use of tobacco products, to what we eat and drink, to exposure to sunlight and ionizing radiation and to exposure to cancer-causing chemicals found in the environment and the workplace (Doll and Peto, 1981). No doubt, some people are more sensitive than others to factors that cause cancer; however, personally controlled lifestyle factors account for the major cancer risk experienced by mankind.

More than 200 epidemiological studies show that a diet high in fruits and vegetables leads to a decrease in cancer as well as other degenerative diseases (Steinmetz and Potter, 1991 a and b). In addition, thousands of human and experimental animal studies show the protective effects of vitamins, minerals, antioxidants and other beneficial phytochemicals against cancer and other degenerative diseases.

D-glucaurate is a nontoxic, natural substance found in both fruits and vegetables, and many studies have shown it to be highly protective against cancer. The health benefits of D-glucarate were discovered by researchers at the M.D. Anderson Cancer Center, the No. 2 cancer center in the United States. They have developed a patented form of glucarate for use in dietary supplements.

In experimental animal studies, D-glucarate has been shown to decrease lung, skin, liver, breast and colon cancers by 60 percent or more (Waleszczuk, 1990). In addition, D-glucarate has been found to have an inhibitor effect on cancers of the bladder and the prostate.

In the breast, D-glucarate has been shown in more than 20 experimental animal and in vitro studies to significantly inhibit cancer. D-glucarate inhibits the induction of breast cancer by a variety of chemical carcinogens and tumor promoters including estrogens. D-glucarate has been found to work synergistically with both retinoids and tamoxifen to prevent the induction of breast cancer. The primary mechanism of action of D-glucarate is through its ability to enhance detoxification of both chemical carcinogens from the environment and estrogenic tumor promoters produced by the body. Women who are at a higher risk for breast cancer have a lower detoxification capacity for carcinogens and estrogens. Several human trials are currently underway with D-glucarate to determine its capability to decrease the breast cancer risk in women at a high risk for breast cancer.

Likewise, D-glucarate has been found to effectively prevent the induction of prostate cancer in men. An enhancement of the detoxification of carcinogens and androgens appears to be the mechanism by which D-glucarate inhibits prostate cancer. Several experimental animal studies have likewise shown the protective effect of calcium D-glucarate against colon cancer induced by various potent carcinogens. Once again, the mechanism by which calcium D-glucarate inhibits colon cancer appears to be related to the enhancement of the detoxification of both carcinogens and sterol tumor promoters.

In studies of lung cancer, a leading cause of death in this country, D-glucarate has been shown to effectively inhibit the induction of this form of cancer in experimental animal studies using different types of carcinogens found in cigarette smoke. Detoxification of these carcinogens appears to be the major mechanism of action.
D-glucarate also appears to have beneficial applications with cancers of the liver, bladder and skin; although, more research is needed. In all reviewed cases, the mechanism of action of D-glucarate appears, once again, to be related to the enhanced detoxification and inhibition of cell proliferation.

Of particular importance, the protective effect observed in experimental animal studies of D-glucarate and its derivatives against cancers of the breast, prostate, colon, lung, liver, bladder and skin appears associated with a considerable inhibition of both the initiation and promotion stages of carcinogenesis. Similar amounts of a calcium control — calcium glucarate — did not provide protection. In a review of all studies performed to date, D-glucarate and its derivatives appear promising as chemopreventive agents against several different cancers.

The mechanism by which D-glucarate enhances the detoxification of carcinogens, steroids and sterols seems to be associated with its ability to inhibit the enzyme glucuronidase. The major mechanism by which carcinogens, steroid hormones and sterols are detoxified is through a process called conjugation by glucuronidation. Glucuronidase effectively reverses this reaction allowing active carcinogens and tumor promoters to do further damage.

It is important to note that D-glucarate is a natural compound produced in small amounts by mammals, including humans, and by some plants. Studies of D-glucarate and its derivatives reveal no toxicity when consumed in large amounts, making it a safe substance to ingest. If glucarate were not produced in small amounts by the human body, it would more than likely be classified as a vitamin because of its beneficial role in protecting against cancer. Dietary sources of D-glucarate include different fruits and vegetables. The highest amounts of D-glucarate are found in fruits, especially apples, grapefruits, cherries and apricots. Significant amounts are also found in vegetables including broccoli, brussel sprouts and alfalfa sprouts.

An Interview With Dr. Thomas Slaga

Dr. Thomas Slaga is the Executive Vice President for Research and the Chair of the Center for Cancer Causation and Prevention at the AMC Cancer Research Center in Denver, Colo. He oversees the development of research programs that focus on major cancer target sites, including the breast, colon, prostate gland and skin. He also directs activities in other areas of cancer study including molecular epidemiology, genetic monitoring and treatment interventions. Recently, we sat down with Dr. Slaga to gather his insights on D-glucarate.

What is calcium D-glucarate?

Dr. Slaga: Calcium D-glucarate is a patented form of glucaric acid. Glucaric acid is already present in small amounts in our bodies and is found in certain fruits and vegetables. It enhances the process known as glucuronidation, a process by which the body rids itself of potentially dangerous carcinogens and other harmful chemicals. Calcium D-glucarate is a form of glucaric acid, which is effectively utilized in the body. D-glucarate is a unique, nontoxic and natural substance found in both fruits and vegetables. Many studies have shown this substance to be highly protective against cancer.

If glucaric acid is produced in our bodies and occurs naturally in fruits and vegetables, why would one take calcium D-glucarate supplements?

Dr. Slaga: Research indicates that taking calcium D-glucarate is beneficial. The substance enhances the body's natural enzymatic process of detoxification. Taking glucarate appears to increase detoxification of harmful chemicals, and this helps to prevent disease. Additional amounts of glucarate are especially important for individuals who are exposed to more harmful chemicals, such as cigarette smoke and individuals who have a high risk for certain cancers, like breast, lung and prostate cancer. The typical American diet does not include enough fruits and vegetables to maintain an effective level of glucarate; therefore, additional amounts can only help the body fight the harmful chemicals.

It has been stated that calcium D-glucarate helps prevent cancer. Is this true? If so, how does it do that?

Dr. Slaga: As I mentioned before, calcium D-glucarate is a substance that aids in glucuronidation, which is one of the body's major detoxification systems for eliminating both foreign chemicals and androgenous chemicals, such as steroids and sterols. Glucuronidation is a reaction where a toxin is made water-soluble so that it can be more easily excreted in the urine or the bile. Calcium D-glucarate inhibits an enzyme, present in many tissues of the body and in the microflora of the intestines, which reverses detoxification. Calcium D-glucarate inhibits detoxification-reversing enzyme B-glucuronidase.
GLUCARATE...
IN BRIEF

- Glucarate is a component of fruits and vegetables and is present in the human body.
- Glucarate is safe; no toxicity has been detected.
- Glucarate is a pure compound that’s molecular structure and mechanism of action is well defined.
- Glucarate supports the major detoxification pathway in the body: glucuronidation. This is the body’s primary defense against cancer-causing agents.
- Shown to inhibit the development of cancers in laboratory animals in more than 30 studies published in cancer research journals.
- Glucarate in lab animals has been shown to be effective in preventing breast, lung, prostate, skin, colon, bladder and liver cancers.
- Clinical trials are underway by the National Cancer Institute and the AMC Cancer Research Center on glucarate as a cancer-preventative agent.
- Epidemiological evidence shows a positive correlation between higher glucarate levels and reduced cancer risk.
- Researchers at M.D. Anderson Cancer Center, the No. 2 cancer center in the United States, developed a patented form of glucarate used in dietary supplements.
- Recommended daily supplement dosage is 200 to 400 mg.

If you will, calcium D-glucarate inhibits the "bad enzyme" in the detoxification process. In a general sense, calcium D-glucarate helps the body’s process for eliminating harmful toxins and carcinogens that occur naturally or come from things like tobacco smoke, pesticides and other foreign substances. In addition, calcium D-glucarate helps eliminate excess amounts of chemicals produced in the body that promote cancer, such as estrogens and androgens. With more of these substances eliminated, an individual may rid his or her body of some of the things that lead to cancer. So, yes, it may be a promising tool against cancer.

How exactly does calcium D-glucarate help with the glucuronidation process?

Dr. Slaga: As we discussed, the body gets rid of harmful substances by making them more water soluble and more excretable. In individuals at risk for cancer, glucaric acid levels are low and are excreted quickly from the body. With low levels of the inhibitor glucaric acid, β-glucuronidase activity is high and there is less excretion of carcinogens and toxins. If an individual were to have higher levels of glucaric acid, he or she may be able to slow down the work of the “bad enzyme,” β-glucuronidase, and rid his or her body of dangerous toxins and carcinogens. Calcium D-glucarate first associates into calcium and glucaric acid in the body, and then glucaric acid spontaneously converts to a lactone that inhibits the bad enzyme.

What are the research findings about calcium D-glucarate and its role against cancer?

Dr. Slaga: In experimental animal studies, D-glucarate has been shown to decrease lung, skin, liver, breast and colon cancers by 60 percent or more. In addition, D-glucarate has been found to have an inhibitor effect on cancers of the bladder and the prostate. In the breast, D-glucarate has been shown in more than 20 experimental animal and in vitro studies to significantly inhibit cancer. Several human trials are currently underway with D-glucarate to determine its capability to decrease the breast cancer risk in women at a high risk for breast cancer.
A NEW BREAKTHROUGH IN CANCER RESEARCH

CONTINUED FROM INSIDE

In addition, several experimental animal studies have shown the protective effect of calcium D-glucarate against colon cancer. Once again, the mechanism by which calcium D-glucarate inhibits colon cancer appears to be related to the enhancement of the detoxification of both carcinogens and steroid tumor promoters. In studies of lung cancer, a leading cause of death in this country, D-glucarate has been shown to effectively inhibit the induction of this form of cancer in experimental animals using different types of carcinogens found in cigarette smoke. Currently there are ongoing studies of the effect of calcium D-glucarate on individuals determined to be at high risk for the development of lung cancer.

At this time, limited data in experimental animal models are available on the effect of D-glucarate on cancers of the liver, the bladder and the skin. However, there appears to be beneficial application.

Why is calcium D-glucarate being targeted on people at risk for breast cancer?

Dr. Slaga: Research suggests that women at risk for breast cancer may suffer from breast cancer due to the effect of calcium glucarate on b-glucuronidase activity and glucose content of certain vegetables and fruits. Biochemical Medicine and Metabolic Biology 43, 83-92 (1990).

Thomas E. Webb, Mai-Huong Pham-Nguyen, Michael Darby and Ashton T. Hamme. Department of Medical Biochemistry, College of Medicine and the Comprehensive Cancer Center, The Ohio State University. The effect of calcium D-glucarate in reducing breast cancer in women is not yet clearly understood. However, the same reactions that promote the excretion of carcinogens promote the excretion of estrogen metabolites.

Wagniel-Mary and Thomas E. Webb. Departments of Surgery, Internal Medicine and Medical Biochemistry, College of Medicine and College of Pharmacy, The Ohio State University, College of Pharmacy, South Dakota State University. Basis for the anti-tumor and chemopreventive activities of glucarate and the glucuronidation of carcinogen. Anticancer Research 13: 395-400 (1993).

Thomas E. Webb, Mai-Huong Pham-Nguyen, Michael Darby and Ashton T. Hamme. Department of Medical Biochemistry, College of Medicine and the Comprehensive Cancer Center, The Ohio State University. Corresponding author. Thomas E. Webb, Ph.D., Department of Medical Biochemistry, The Ohio State University College of Medicine, Biochemical Pharmacology, Vol. 47, No. 9, pp. 1655-1660, 1994.

Markos Mavros, Geoffrey Dutton and Osmo Hjalmas. Evidence that glucarate-1,4-lactone shortens the pharmacological effect of drugs being disposed via the bile as glucuronides. Biochemical Pharmacology, Vol. 24, pp. 1855-1858.

M. Lohmeyer, L. Naughton, S.P. Hunt and P. Workman. Stimulation of intracellular free calcium increases by platelet-activating factor in HT29 colon carcinoma cells, MR3 Units of Clinical Oncology and Radiotherapeutics and Molecular Neurobiology, MRC Centre, U.K.; and CRC Department of Medical Oncology, CRC Beaton Laboratories, Glasgow University, U.K. MRC Division of Developmental Neurobiology, MRC National Institute for Medical Research, U.K.